Small-scale materials blast testing using gram-range explosives and air-shock loading
ORAL
Abstract
Many material properties are unknown under the high strain rates of shock wave impulse from an explosion in air. Actual blast testing is required for this, but full-scale explosive tests are expensive and dangerous, and yield limited data. Here we explore the possibility that gram-range explosive charges can be used for such testing in an ordinary laboratory setting. The explosion is characterized by high-speed digital shadowgraphy and piezoelectric pressure records of shock speed and overpressure duration. These data yield an explosive impulse describing the strength of shock loading at various standoff distances from a material sample (typically 25cm diameter). Simultaneously, twin high-speed digital cameras and surface tracking software provide material displacement and strain rate data during the test. In principle, these data and the measured shock loading provide a means to find dynamic material properties by an inverse computational approach. A scaling analysis also relates the gram-range blast test to a large-scale blast from the same or a different explosive.
–
Authors
-
Michael Hargather
-
Gary Settles
Mechanical \& Nuclear Engr.. Dept., Penn State University, Mechanical \& Nuclear Engineering Dept., Penn State University