Numerical Study of Flow Over Two Circular Cylinders Arranged in Tandem at High Reynolds Numbers using Large Eddy Simulation

ORAL

Abstract

Previously published exprimental data of the flow around two circular cylinders arranged in tandem have shown that for small spacings between the cylinders, the shear layer from the upstream cylinder reattaches to the downstream cylinder, hence creating a recirculation region in between the two cylinders. The experimental data was obtained at Re=65,000 and it was found that beyond a critical spacing (L/D $\sim $ 4.0), the upstream shear layer ceases to attach to the downstream cylinder, resulting in a dramatic change in the flow mechanisms. Previous numerical studies using two-dimensional RANS and URANS were unsatisfactory at predicting the length of the recirculation region of the upstream cylinder and consequently badly predicted the hydrodynamic forces between the two cylinders. In this study, Large Eddy Simulation with a dynamic Smagorinsky subgrid-scale model was used to investigate the flow around two circular cylinders arranged in tandem. Results from high Reynolds numbers simulations will be presented and practical considerations in using LES in such a flow configuration will be discussed.

Authors

  • Raymond Cohen

  • Andrew Ooi

    The University of Melbourne

  • Gianluca Iaccarino

    Stanford University

  • Frank Ham

    Stanford University, Center for Turbulence Research, Stanford University