APS Logo

Isotope engineering for spin defects in van der Waals materials

POSTER

Abstract

Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center (VB-) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to VB- in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded VB- spin transitions as well as extended coherence time T2 and relaxation time T1. For quantum sensing, VB- centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the VB- hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor 15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials.

Publication: Gong, Ruotian, et al. "Isotope engineering for spin defects in van der Waals materials." Nature Communications 15.1 (2024): 104.

Presenters

  • Ruotian Gong

    Washington University in St. Louis

Authors

  • Ruotian Gong

    Washington University in St. Louis

  • Xinyi Du

    Washington University in St. Louis

  • Eli Janzen

    Kansas State University

  • Vincent Liu

    Harvard University

  • Zhongyuan Liu

    Washington University, St. Louis, Washington University in St. Louis

  • Guanghui He

    Washington University in St. Louis

  • Bingtian Ye

    Harvard University

  • Tongcang Li

    Purdue University

  • Norman Y Yao

    Harvard University

  • James Edgar

    Kansas State University

  • Erik Henriksen

    Washington University in St. Louis

  • Chong Zu

    Washington University in St. Louis