APS Logo

Resolving high order icosahedral tensor interactions in C60 fullerenes

ORAL

Abstract

C60's stiff bonds and high symmetry provide the unique opportunity to study a large polyatomic molecule (60 atoms) in individual ro-vibrational states at a temperature of ∼100 K. Simultaneously, the thermal occupation of 100's of rotational states reveals extensive J-dependence of rotational perturbations, elucidating the interplay of angular momentum, symmetry, and rovibrational coupling in a high-symmetry molecule. While previous work established the well-resolved, regular rigid rotor-like R-branch spectrum in the 8.4 μm vibrational band, the P-branch appeared anomalously fractionated and was hitherto unresolved and unexplained. We have experimentally measured and assigned individual rotational sublevels in the P-branch and identified their origin in tensor interactions driven by the molecule's icosahedral symmetry. This constitutes the first observation of intramolecular icosahedral tensor interac tions since their initial prediction for C60 three decades ago. Additionally, we obtain strong evidence that the P-branch perturbations arise from intramolecular vibrational coupling, providing a direct window into the emergence of complexity in C60.

Publication: Resolving high order icosahedral tensor interactions in C60 fullerenes (in prep.)

Presenters

  • Lee R Liu

    JILA

Authors

  • Lee R Liu

    JILA

  • Dina Rosenberg

    University of Colorado, Boulder

  • Bryan Changala

    CFA, harvard university, Center for Astrophysics, Harvard & Smithsonian

  • David J Nesbitt

    University of Colorado, Boulder

  • Timur V Tscherbul

    University of Nevada, Reno

  • Jun Ye

    CU Boulder, JILA, University of Colorado Boulder, JILA