Fermions in an Optical Box - Tales of Stability
ORAL · Invited
Abstract
For the past two decades harmonically trapped ultracold atomic gases have been used with great success to study fundamental many-body physics in flexible experimental settings. However, the resulting gas density inhomogeneity in those traps makes it challenging to study paradigmatic uniform-system physics (such as critical behavior near phase transitions) or complex quantum dynamics. The realization of homogeneous quantum gases trapped in optical boxes has marked a milestone in the quantum simulation program with ultracold atoms [1]. These textbook systems have proved to be a powerful playground by simplifying the interpretation of experimental measurements, by making more direct connections to theories of the many-body problem that generally rely on the translational symmetry of the system, and by altogether enabling previously inaccessible experiments. I will present a set of studies with ultracold fermions trapped in a box of light. This system is particularly suitable to study problems of fermion stability, of which I will discuss two cases: the spin-1/2 Fermi gas with repulsive contact interactions [2], and the three-component Fermi gas with spin-population imbalance [3]. Both studies lead to surprises, highlighting how spatial homogeneity not only simplifies the connection between experiments and theory, but can also unveil unexpected outcomes.
–
Publication: [1] N. Navon, R.P. Smith, Z. Hadzibabic, Nat. Phys. 17, 1334 (2021)<br>[2] Y. Ji et al., Phys. Lev. Lett 129, 203402 (2022)<br>[3] G.L. Schumacher et al., arXiv:2301.02237
Presenters
-
Nir Navon
Yale University, Yale
Authors
-
Nir Navon
Yale University, Yale