APS Logo

Rotating Bose gas dynamically enters the lowest Landau level

ORAL

Abstract

Motivated by recent experiments, we model the dynamics of a condensed Bose gas in a rotating anisotropic trap. The equations of motion of neutral particles in a rotating frame are analogous to those of charged particles in a magnetic field. As the rotation rate is ramped from zero to the trapping frequency, the condensate stretches along one direction and is squeezed along another, becoming long and thin. When the trap anisotropy is slowly switched off on a particular timescale, the condensate is left in the lowest Landau level. We use a time dependent variational approach to quantify these dynamics and give intuitive arguments about the structure of the condensate wavefunction. This preparation of a lowest Landau level condensate can be an important first step in realizing bosonic analogs of quantum Hall states.

Publication: https://arxiv.org/abs/2111.10415

Presenters

  • Vaibhav Sharma

    Cornell University

Authors

  • Vaibhav Sharma

    Cornell University

  • Erich J Mueller

    Cornell University