APS Logo

Probing the extended Fermi-Hubbard Model with ultracold ytterbium

ORAL

Abstract

The Fermi-Hubbard Model (FHM) in condensed-matter physics describes the interplay between the kinetic energy and the on-site interaction of electrons in a lattice. Ultracold atoms in optical lattices have allowed to investigate this model with an unprecedented level of control and tunability. While the original focus has been on the FHM of spin 1/2 particles and SU(2) symmetry, extended Hubbard models, such as multi-band and SU(N>2)-symmetric models, can now increasingly be addressed both in experiment and theory. In our experiment, we implement Hamiltonians such as the SU(N)-FHM with tunable N≤6 with ultracold ytterbium. We prepare 173Yb atoms in a two-dimensional square optical lattice, and locally probe the FHM for variable symmetry and interactions, allowing for direct comparisons of different systems and benchmarking of theoretical models.

Presenters

  • Giulio Pasqualetti

    Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST)

Authors

  • Giulio Pasqualetti

    Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST)

  • Oscar Bettermann

    Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST)

  • Nelson Darkwah Oppong

    Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST)

  • Immanuel Bloch

    Max Planck Institute for Quantum Optics, Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST), Max Planck Institute of Quantum Optics, Max Planck Institute of Quantum Optics, 85748 Garching, Germany and Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany

  • Simon Foelling

    Ludwig-Maximilians-Universität (LMU-Munich), Max-Planck Institut für Quantenoptik (MPQ), Munich Center for Quantum Science and Technology (MCQST)