Few-fs resolution of a photoactive protein traversing a conical intersection
ORAL · Invited
Abstract
The structural dynamics of a molecule are determined by the underlying potential energy landscape. Conical intersections are funnels connecting otherwise separate potential energy surfaces. Posited almost a century ago, conical intersections remain the subject of intense scientific interest. In biology, they play a pivotal role in vision, photosynthesis, and DNA stability. Accurate theoretical methods for examining conical intersections are at present limited to small molecules. Experimental investigations are challenged by the required time resolution and sensitivity. Current structure-dynamical understanding of conical intersections is thus limited to simple molecules with around 10 atoms, on timescales of about 100 fs or longer. Spectroscopy can achieve better time resolutions, but provides indirect structural information. Here, we present few-femtosecond, atomic-resolution videos of the Photoactive Yellow Protein, a 2,000-atom protein, passing through a conical intersection. These videos, extracted from experimental data by machine learning, reveal the dynamical trajectories of de-excitation via a conical intersection, yield the key parameters of the conical intersection controlling the de-excitation process, and elucidate the topography of the electronic potential energy surfaces involved.
* In collaboration with: A. Hosseinizadeh, N. Breckwoldt, R. Fung, R. Sepehr, M. Schmidt, P. Schwander, and R. Santra.
* In collaboration with: A. Hosseinizadeh, N. Breckwoldt, R. Fung, R. Sepehr, M. Schmidt, P. Schwander, and R. Santra.
–
Publication: Few-fs resolution of a photoactive protein traversing a conical intersection, Hosseinizadeh et al., Nature 599, pages 697–701 (2021)
Presenters
-
Abbas Ourmazd
University of Wisconsin - Milwaukee
Authors
-
Abbas Ourmazd
University of Wisconsin - Milwaukee