The rise and fall, and slow rise again, of operator entanglement under dephasing
ORAL
Abstract
Operator space entanglement entropy, or simply "operator entanglement" (OE), is an indicator of the complexity of quantum operators and of their approximability by Matrix Product Operators (MPO). We study the OE of the density matrix of a 1D spin chain undergoing dissipative evolution. It is expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be suppressed by dissipative processes as the system evolves to a simple stationary state. Surprisingly, we find that this scenario breaks down for one of the most fundamental dissipative mechanisms: dephasing. Under dephasing, after the initial "rise and fall" the OE can rise again, increasing logarithmically at long times. Using a combination of MPO simulations for chains of infinite length and analytical arguments valid for strong dephasing, we argue that this logarithmic growth is inherent to a U(1) conservation law, universal, and trace it back to an anomalous classical diffusion process.
–
Publication: arxiv:2201.05099 (2022), https://arxiv.org/abs/2201.05099
Presenters
-
Johannes Schachenmayer
CNRS, Institut de science et d'ingénierie supramoléculaires, Institut de science et d'ingénierie supramoléculaires
Authors
-
David Wellnitz
CNRS, University of Strasbourg, IPCMS/ISIS, University of Strasbourg
-
Guillermo Preisser
ISIS, University of Strasbourg
-
Vincenzo Alba
University of Pisa, INFN
-
JEROME DUBAIL
Universite de Lorraine
-
Johannes Schachenmayer
CNRS, Institut de science et d'ingénierie supramoléculaires, Institut de science et d'ingénierie supramoléculaires