APS Logo

quantum state control of chiral molecules

ORAL

Abstract

Recently, the enantiomer-specific state transfer (ESST) method [1] was demonstrated using tailored microwave fields. This method allows to populate or depopulate a rotational state of a chosen enantiomer, providing a way of quantum-controlled chiral separation. Thus far, the transfer efficiency of ESST has been limited by thermal population of the energy levels participating in ESST [1,2] and by Mdegeneracy [3]. To address these prior limitations, we developed a new experimental scheme which increases the efficiency of ESST by over a factor of ten compared to previously reported values [4]. This scheme enables a quantitative comparison between experiment and theory for the transfer efficiency in what is the simplest ESST triangle for any chiral molecule, that is, the one involving the absolute ground state level. Starting with a racemic mixture, a straightforward extension of this scheme should be able to create a molecular beam with an enantiomer-pure rotational level, holding great prospects for future spectroscopic and scattering studies.

References

[1] S. Eibenberger, et al., Phys. Rev. Lett. 118, 123002 (2017)

[2] P. Cristóbal, et al., Angew. Chem. Int. Ed. 56, 12512 (2017)

[3] M. Leibscher, et al., arXiv:2010.09296 (2020)

[4] J.H. Lee, et al., arXiv:2112.09058 (2021)

Publication: Lee, J. H., Bischoff, J., Hernandez-Castillo, A. O., Sartakov, B., Meijer, G., Eibenberger-Arias., S., Quantitative study of enantiomer-specific state transfer, arXiv:2112.09058 (2021)

Presenters

  • JuHyeon Lee

    Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin

Authors

  • JuHyeon Lee

    Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin

  • Johannes Bischoff

    Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin

  • Alicia O Hernandez-Castillo

    Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin

  • Qian J Yu

    Fritz Haber Institute of the Max Planck Society, Prokhorov General Physics Institute, Russian Academy of Sciences, Fritz-Haber Institute, Fritz-Haber-Institute, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin, Prokhorov General Physics Institute, Russian Academy of Science, Vavilovstreet 38, 119991 Moscow, Russia, UC Berkeley

  • Qian J Yu

    Fritz Haber Institute of the Max Planck Society, Prokhorov General Physics Institute, Russian Academy of Sciences, Fritz-Haber Institute, Fritz-Haber-Institute, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin, Prokhorov General Physics Institute, Russian Academy of Science, Vavilovstreet 38, 119991 Moscow, Russia, UC Berkeley

  • Sandra Eibenberger-Arias

    Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Molecular Physics, Faradayweg 4-6, D-14195 Berlin