Optimal metrology with programmable quantum sensors
ORAL
Abstract
Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum-enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. In this talk I will present our progress in this regard, where we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped ion experiment, particularly generalized Ramsey interferometery. We further perform on-device quantum-classical feedback optimization to `self-calibrate' the programmable quantum sensor. This ability illustrates that this next generation of quantum sensor can be employed without prior knowledge of the device or its noise environment.
–
Presenters
-
Christian Marciniak
University of Innsbruck
Authors
-
Christian Marciniak
University of Innsbruck