APS Logo

Multi-electron interaction control in molecules using ultrashort laser pulses

ORAL

Abstract

While electron-electron interactions play a fundamental role in any atom beyond hydrogen, they also govern molecular structure and reactivity. We introduce and experimentally demonstrate a general concept to control multi-electron interaction by intense, ultrashort laser fields. In particular, strong coupling to excited states allows to modify the effective exchange energy by infrared (IR) induced valence orbital mixing. For a proof-of-principle, we focus on the sulfur hexafluoride molecule, SF6, considering the coupling of a sulfur 2p core hole with a valence excited electron on the few-femtosecond timescale, using a combination of soft x-ray and IR laser pulses. The IR laser intensity represents a control knob to tune the effective exchange interaction energy, resulting in a characteristic change in the spin-orbit-split oscillator strength ratio that is directly quantified in the x-ray absorption spectroscopy experiment. This is conducted on a purely electronic level without depending on nuclear motion or significant population transfer. Besides describing the underlying physics with a mechanistic fit model, these findings are validated by an ab-initio quantum-mechanical many-body simulation. Such direct control of effective electronic interactions and correlation is a significant step towards laser-directed chemistry on the fundamental electronic level with single-atomic site selectivity.

Publication: P. Rupprecht, L. Aufleger, S. Heinze, A. Magunia, T. Ding, M. Rebholz, S. Amberg, N. Mollov, F. Henrich, M. W. Haverkort, C. Ott, T. Pfeifer, Laser control of multi-electron interaction in molecules, submitted

Presenters

  • Patrick Rupprecht

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Authors

  • Patrick Rupprecht

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Lennart Aufleger

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Simon Heinze

    Universität Heidelberg, Institut für theoretische Physik, Philosophenweg 19, 69120 Heidelberg, Germany

  • Alexander Magunia

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Thomas Ding

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Marc Rebholz

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Stefano Amberg

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Nikola Mollov

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Felix Henrich

    Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

  • Maurits Haverkort

    Universität Heidelberg, Institut für theoretische Physik, Philosophenweg 19, 69120 Heidelberg, Germany

  • Christian Ott

    Max-Planck-Institute for Nuclear Physics, 69117 Heidelberg, Germany, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany, Max Planck Inst Kernphys

  • Thomas Pfeifer

    Max-Planck-Institut f¨ur Kernphysik, 69117 Heidelberg, Germany, Max-Planck-Institute for Nuclear Physics, 69117 Heidelberg, Germany, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany, MPI-K Heidelberg, Max Planck Institut for Nuclear Physics Heidelberg, Max Planck Inst Kernphys