Circular Dichroism in Atomic Resonance-Enhanced Few-Photon Ionization
POSTER
Abstract
We investigate few-photon ionization of lithium atoms prepared in the polarized 2p (m = +1) state when subjected to femtosecond light pulses with left- or right-handed circular polarization [1] at wavelengths between 665 nm and 920 nm. We consider whether ionization proceeds more favorably for the electric field co- or counter-rotating with the initial electronic current density. Strong asymmetries are found and quantitatively analyzed in terms of “circular dichroism” (CD). While the intensity dependence of the measured CD values is rather weak throughout the investigated regime, a very strong sensitivity on the center wavelength of the incoming radiation is observed. While the co-rotating situation overall prevails, the counter-rotating geometry is strongly favored around 800 nm due to the 2p-3s resonant transition, which can only be driven by counter-rotating fields. The observed features provide insights into the helicity dependence of light-atom interactions, and on the possible control of electron emission in atomic few-photon ionization by polarization-selective resonance enhancement.
[1] A. De Silva et al., Phys. Rev. Lett. 126, 023201 (2021)
[1] A. De Silva et al., Phys. Rev. Lett. 126, 023201 (2021)
Publication: Phys. Rev. Lett. 126, 023201 (2021)
Presenters
-
Taylor Moon
Kennesaw State University
Authors
-
Taylor Moon
Kennesaw State University
-
Nicolas Douguet
Kennesaw State University, Kennesaw University
-
A.H.N.C. D Silva
Missouri University of Science & Technology, Missouri University of Science and Technology
-
Klaus R Bartschat
Drake University
-
Daniel Fischer
Missouri University of Science & Technology, Missouri University of Science and Technology