APS Logo

Enhanced high-harmonic generation (HHG) from Cr-doped MgO crystals

POSTER

Abstract

HHG from crystals is a new source of coherent extreme ultraviolet (XUV) attosecond radiation [1], which also allows the retrieval of band structure information [2]. Increasing the HHG yield and cutoff are fundamental to developing efficient XUV sources. We investigate an alternative way of boosting the HHG yield based on doping. The presence of dopants results in new electronic states in the band gap, as well as lattice defects, which modify the minimum band gap. Since the interband HHG yield depends exponentially on the minimum band-gap energy EG of the solid [3], one can expect a substantial change of the HHG yield by reducing EG [4]. We show the first experimental observation of impurity-enhanced HHG yields that is supported by our numerical solutions of the Semiconductor Bloch Equations [5].

 

[1] G. Vampa, et al., IEEE J. Sel. Top. Quantum Electron. 21, 8700110 (2015).

[2] N. Tancogne-Dejean, et al., Phys. Rev. Lett. 118, 087403 (2017).

[3]  Navarrete, et al., Phys. Rev. A 100, 033405 (2019).

[4] T. Huang, et al., Phys.Rev. A 96, 043425 (2017).

[5] Nefedova, et al., arXiv:2001.00839 (2020).

Presenters

  • Francisco Navarrete

    Kansas State University and Rostock University

Authors

  • Francisco Navarrete

    Kansas State University and Rostock University

  • Viktoria Nefedova

    CEA-CNRS-Université Paris-Saclay

  • Sven Fröhlich

    CEA-CNRS-Université Paris-Saclay

  • Nicolas Tancogne-Dejean

    CFEL Hamburg

  • Willem Boutu

    CEA-CNRS-Université Paris-Saclay

  • Marcelo Ciappina

    ICFO - The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain; Physics Program, Guangdong Technion-Israel Institute of Technology, Shantou, ICFO Barcelona

  • David Gauthier

    CEA-CNRS-Université Paris-Saclay

  • Aimrane Hamdou

    CEA-CNRS-Université Paris-Saclay

  • Shatha Kaassamani

    CEA-CNRS-Université Paris-Saclay

  • Uwe Thumm

    Kansas State University

  • Hamed Merdji

    CEA-CNRS-Université Paris-Saclay