Bilayer Fermi-Hubbard systems via Quantum Gas Microscope
ORAL
Abstract
Ultracold atoms in optical lattices offer a unique route for the quantum simulation of the Hubbard model. Quantum gas microscopy with a single-site resolution has enabled the study of the interplay between spin and charge in both one- and two-dimensional strongly correlated systems. Here, we report on the experimental study of the bilayer Fermi-Hubbard (BFH) systems where the phase diagram of the BFH model at half filling is explored. To realize the coupled-bilayer systems, we implement a fully-controllable bichromatic vertical superlattice in our $^{\mathrm{6}}$Li quantum gas microscope. We perform geometric charge pumping to increase the separation between the layers and therefore achieve the single-site resolution images of both layers. Furthermore, we integrate the Stern-Gerlach splitting and the bilayer readout techniques which allows for spin-resolved two-dimensional Fermi-Hubbard systems in larger sizes.
–
Authors
-
Pimonpan Sompet
Max-Planck-Institut für Quantenoptik
-
Joannis Koepsell
Max-Planck-Institut für Quantenoptik
-
Sarah Hirthe
Max-Planck-Institut für Quantenoptik
-
Dominik Bourgund
Max-Planck-Institut für Quantenoptik
-
Guillaume Salomon
Max-Planck-Institut für Quantenoptik
-
Jayadev Vijayan
Max-Planck-Institut für Quantenoptik
-
Immanuel Bloch
Max-Planck-Institut für Quantenoptik
-
Christian Gross
Max-Planck-Institut für Quantenoptik, Max-Planck-Institute of Quantum Optics