APS Logo

Bilayer Fermi-Hubbard systems via Quantum Gas Microscope

ORAL

Abstract

Ultracold atoms in optical lattices offer a unique route for the quantum simulation of the Hubbard model. Quantum gas microscopy with a single-site resolution has enabled the study of the interplay between spin and charge in both one- and two-dimensional strongly correlated systems. Here, we report on the experimental study of the bilayer Fermi-Hubbard (BFH) systems where the phase diagram of the BFH model at half filling is explored. To realize the coupled-bilayer systems, we implement a fully-controllable bichromatic vertical superlattice in our $^{\mathrm{6}}$Li quantum gas microscope. We perform geometric charge pumping to increase the separation between the layers and therefore achieve the single-site resolution images of both layers. Furthermore, we integrate the Stern-Gerlach splitting and the bilayer readout techniques which allows for spin-resolved two-dimensional Fermi-Hubbard systems in larger sizes.

Authors

  • Pimonpan Sompet

    Max-Planck-Institut für Quantenoptik

  • Joannis Koepsell

    Max-Planck-Institut für Quantenoptik

  • Sarah Hirthe

    Max-Planck-Institut für Quantenoptik

  • Dominik Bourgund

    Max-Planck-Institut für Quantenoptik

  • Guillaume Salomon

    Max-Planck-Institut für Quantenoptik

  • Jayadev Vijayan

    Max-Planck-Institut für Quantenoptik

  • Immanuel Bloch

    Max-Planck-Institut für Quantenoptik

  • Christian Gross

    Max-Planck-Institut für Quantenoptik, Max-Planck-Institute of Quantum Optics