APS Logo

High-harmonic generation (HHG) enhancement from Cr-doped MgO

POSTER

Abstract

HHG from crystals is a source of coherent extreme ultraviolet (XUV) attosecond radiation [1] and reveals band-structure information of the sample [2]. Increasing the HHG yield and HH cutoff frequency are fundamental goals in the development of efficient XUV sources, which we aim for by investigating the effects of doping on HHG spectra. The presence of dopants results in new electronic states in the band gap, as well as lattice defects, which modify the minimum band gap. Because the interband HHG yield depends exponentially on the minimum band-gap energy of the solid [3], we expect a substantial change of the HHG yield by doping [4]. We measured impurity-enhanced HHG yields [5] and analyze our experimental spectra in comparison with numerical solutions of the Semiconductor Bloch Equations. [1] G. Vampa, et al., IEEE J. Sel. Top. Quantum Electron. 21, 8700110 (2015). [2] N. Tancogne-Dejean, et al., Phys. Rev. Lett. 118, 087403 (2017). [3] F. Navarrete, et al., Phys. Rev. A 100, 033405 (2019). [4] T. Huang, et al., Phys.Rev. A 96, 043425 (2017). [5] V. Nefedova, et al., arXiv:2001.00839 (2020).

Authors

  • V. Nefedova

    CEA-CNRS-Saclay

  • Francisco Navarrete

    Kansas State University

  • S. Froehlich

    CEA-CNRS-Saclay

  • N. Tancogne-Dejean

    CFEL Hamburg

  • W. Boutu

    CEA-CNRS-Saclay

  • Marcelo Ciappina

    ELI beamlines Prague, Eli beamlines Prague, ICFO-The Institute of Photonic Sciences, Barcelona, Spain

  • W. Boutu

    CEA-CNRS-Saclay

  • A. Hamdou

    CEA-CNRS-Saclay

  • S. Kaassamani

    CEA-CNRS-Saclay

  • A. Rubio

    CFEL Hamburg

  • Uwe Thumm

    Kansas State University, James R. Macdonald Laboratory, Department of Physics, Kansas State University

  • H. Merdji

    CEA-CNRS-Saclay