Negative ion formation in low-energy electron-fullerene collisions: Fullerene anionic catalysis
POSTER
Abstract
Negative-ion formation in the fullerene molecules C$_{\mathrm{44}}$, C$_{\mathrm{60}}$, C$_{\mathrm{100}}$, C$_{\mathrm{124}}$, C$_{\mathrm{128}}$ and C$_{\mathrm{136}}$ is explored through low-energy electron elastic scattering total cross sections (TCSs) calculations using our robust Regge-pole methodology. We find that the TCSs are characterized generally by ground, metastable and excited negative ion formation during the collisions, Ramsauer-Townsend minima and shape resonances. The novelty and generality of the Regge-pole approach is in the extraction of the negative ion binding energies (BEs) of complex heavy systems from the calculated TCSs. For ground states collisions these BEs correspond to the electron affinities (EAs), yielding excellent agreement with measured EAs for C$_{\mathrm{20}}$ through C$_{\mathrm{92}}$ [1, 2]. Utility of the formed fullerene negative ions is demonstrated in the catalysis of water oxidation to peroxide and water synthesis from H$_{\mathrm{2}}$ and O$_{\mathrm{2}}$ using the anionic fullerene catalysts C$_{\mathrm{20}}$\textbf{\textasciimacron } - C$_{\mathrm{136}}$\textbf{\textasciimacron }$_{\mathrm{.}}$ DFT transition state calculations found C$_{\mathrm{52}}$\textbf{\textasciimacron }and C$_{\mathrm{60}}$\textbf{\textasciimacron } numerically stable for both water and peroxide synthesis, C$_{\mathrm{100}}$\textbf{\textasciimacron } increases the energy barrier the most and C$_{\mathrm{136}}$\textbf{\textasciimacron } the most effective catalyst in both water synthesis and oxidation to H$_{\mathrm{2}}$O$_{\mathrm{2}}$. \begin{enumerate} \item A. Z. Msezane and Z. Felfli, Chem. Phys. \textbf{503}, 50 (2018) \item Z. Felfli and A.Z. Msezane, Euro. Phys. J. D \textbf{72}, 78 (2018) \end{enumerate}
Authors
-
Zineb Felfli
Clark Atlanta Univ
-
Kelvin Suggs
Clark Atlanta Univ
-
Nantambu Nicholas
Clark Atlanta Univ
-
Alfred Z Msezane
Clark Atlanta Univ