Magnetoelectric response of LiNiPO$_{4}$ from first-principles

ORAL

Abstract

The lithium orthophosphates LiMPO$_{4}$ (M = Mn, Fe, Co, Ni) have attracted large interest because of their potential use in cathode electrode for Li-ion batteries as well as their large magnetoelectric response and more recently because of the presence of ferrotoroidic domains in LiCoPO$_{4}$. Here we will discuss the response to a static magnetic field of LiNiPO$_{4}$ by means of first-principles calculations. This will allow us to extract the magnetic susceptibility as well as the magnetoelectric coefficients and to analyze their microscopic origin by decomposing the electronic and the ionic contributions. This last decomposition highlight the importance of the electronic contribution to the magnetoelectric response.

Authors

  • Eric Bousquet

    UCSB

  • Andreas Bill

    Photonics CoE, Sciprint.org, LLNL, OSU, Imperial College London, General Atomis, UCSD, University of Milan, Instituto Superior Technico, University of Alberta, US Dept. of Agriculture, Agriculture Research Service, Parlier, CA, Dept. of Chemistry, California State University, Fresno, Dept. of Physics, California State University, Fresno, Weizmann Institute of Science, Stanford University, University of Connecticut, Storrs, UC Irvine, University of Missouri-Kansas City, California Institute of Technology, Ulm University, TU Darmstadt, UC Berkeley, GSFC, University of Regenberg, Germany, Lawrence Livermore National Laboratory, Clarendon Laboratory, Oxford, University of California, Los Angeles, Gesellschaft fuer Schwerionenforschung (GSI), Laboratoire pour l'Utilisation des Lasers Intenses, PSFC, MIT, University of California, Santa Barbara, Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Division of Chemistry, California Institute of Technology, Pasadena, CA, Department of Physics, Fars Science and Research Center, Islamic Azad University, Texas A\&M University-Commerce, California State University, Long Beach, Materials Department, University of California Santa Barbara

  • Andreas Bill

    Photonics CoE, Sciprint.org, LLNL, OSU, Imperial College London, General Atomis, UCSD, University of Milan, Instituto Superior Technico, University of Alberta, US Dept. of Agriculture, Agriculture Research Service, Parlier, CA, Dept. of Chemistry, California State University, Fresno, Dept. of Physics, California State University, Fresno, Weizmann Institute of Science, Stanford University, University of Connecticut, Storrs, UC Irvine, University of Missouri-Kansas City, California Institute of Technology, Ulm University, TU Darmstadt, UC Berkeley, GSFC, University of Regenberg, Germany, Lawrence Livermore National Laboratory, Clarendon Laboratory, Oxford, University of California, Los Angeles, Gesellschaft fuer Schwerionenforschung (GSI), Laboratoire pour l'Utilisation des Lasers Intenses, PSFC, MIT, University of California, Santa Barbara, Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Division of Chemistry, California Institute of Technology, Pasadena, CA, Department of Physics, Fars Science and Research Center, Islamic Azad University, Texas A\&M University-Commerce, California State University, Long Beach, Materials Department, University of California Santa Barbara