Tuning the Coercivity in Low-Dimensional Magnetic Thin Films

ORAL

Abstract

Low-dimensional magnetism has played an important role in theoretical physics; however, experimentally it is more challenging because of difficulty in achieving statistically significant sample sizes. Recently, iron stripes have been prepared on terraced substrates with line separations of about 10nm. In order to reduce the iron chain separation to under 2nm, we prepared thin films of self-assembling organic molecules. Results of low-temperature ferromagnetic response from iron phthalocyanine thin films that form quasi one-dimensional chains are presented. The magnetic hysteresis loops indicate long-range ferromagnetic interaction below 4.5 K and exhibit a memory state. The coercivity could be correlated with the grain size of the iron phthalocyanine thin film. The larger coercivity is attributed to longer chains that are formed in larger grains.

Authors

  • Isaac Bonyuet

    California State University, Long Beach

  • Andreas Bill

    Photonics CoE, Sciprint.org, LLNL, OSU, Imperial College London, General Atomis, UCSD, University of Milan, Instituto Superior Technico, University of Alberta, US Dept. of Agriculture, Agriculture Research Service, Parlier, CA, Dept. of Chemistry, California State University, Fresno, Dept. of Physics, California State University, Fresno, Weizmann Institute of Science, Stanford University, University of Connecticut, Storrs, UC Irvine, University of Missouri-Kansas City, California Institute of Technology, Ulm University, TU Darmstadt, UC Berkeley, GSFC, University of Regenberg, Germany, Lawrence Livermore National Laboratory, Clarendon Laboratory, Oxford, University of California, Los Angeles, Gesellschaft fuer Schwerionenforschung (GSI), Laboratoire pour l'Utilisation des Lasers Intenses, PSFC, MIT, University of California, Santa Barbara, Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Division of Chemistry, California Institute of Technology, Pasadena, CA, Department of Physics, Fars Science and Research Center, Islamic Azad University, Texas A\&M University-Commerce, California State University, Long Beach, Materials Department, University of California Santa Barbara

  • Andreas Bill

    Photonics CoE, Sciprint.org, LLNL, OSU, Imperial College London, General Atomis, UCSD, University of Milan, Instituto Superior Technico, University of Alberta, US Dept. of Agriculture, Agriculture Research Service, Parlier, CA, Dept. of Chemistry, California State University, Fresno, Dept. of Physics, California State University, Fresno, Weizmann Institute of Science, Stanford University, University of Connecticut, Storrs, UC Irvine, University of Missouri-Kansas City, California Institute of Technology, Ulm University, TU Darmstadt, UC Berkeley, GSFC, University of Regenberg, Germany, Lawrence Livermore National Laboratory, Clarendon Laboratory, Oxford, University of California, Los Angeles, Gesellschaft fuer Schwerionenforschung (GSI), Laboratoire pour l'Utilisation des Lasers Intenses, PSFC, MIT, University of California, Santa Barbara, Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Division of Chemistry, California Institute of Technology, Pasadena, CA, Department of Physics, Fars Science and Research Center, Islamic Azad University, Texas A\&M University-Commerce, California State University, Long Beach, Materials Department, University of California Santa Barbara

  • Andreas Bill

    Photonics CoE, Sciprint.org, LLNL, OSU, Imperial College London, General Atomis, UCSD, University of Milan, Instituto Superior Technico, University of Alberta, US Dept. of Agriculture, Agriculture Research Service, Parlier, CA, Dept. of Chemistry, California State University, Fresno, Dept. of Physics, California State University, Fresno, Weizmann Institute of Science, Stanford University, University of Connecticut, Storrs, UC Irvine, University of Missouri-Kansas City, California Institute of Technology, Ulm University, TU Darmstadt, UC Berkeley, GSFC, University of Regenberg, Germany, Lawrence Livermore National Laboratory, Clarendon Laboratory, Oxford, University of California, Los Angeles, Gesellschaft fuer Schwerionenforschung (GSI), Laboratoire pour l'Utilisation des Lasers Intenses, PSFC, MIT, University of California, Santa Barbara, Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Division of Chemistry, California Institute of Technology, Pasadena, CA, Department of Physics, Fars Science and Research Center, Islamic Azad University, Texas A\&M University-Commerce, California State University, Long Beach, Materials Department, University of California Santa Barbara

  • Thomas Gredig

    California State University, Long Beach