Ab initio calculations for dark matter detection and CEvNS
ORAL
Abstract
Over the past decades, ab initio nuclear calculation has made dramatic progress, especially reaching the heavy mass region as 208Pb [1]. This means that it becomes possible to obtain first-principles computation (with quantified uncertainties) of quantities which even reside in the heavy-mass region. The quantities include these relevant to astrophysics and searches for physics beyond the Standard Model. In this talk, I will present a conceptual introduction to modern ab initio theory. Then, I will focus on recent advances in ab initio calculations of nuclear responses for dark matter (DM) direct detection [2] and coherent elastic neutrino-nucleus scattering (CEvNS), including nuclei 19F, 23Na, 27Al, 28-30Si, 70,72-74,76Ge, 127I, 133Cs, and 128-132,134,136Xe.
[1]. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. B.S. Hu, W.G. Jiang, T. Miyagi, Z.H, Sun, et al. Nat. Phys. 118, 1196 (2022) arXiv:2112.01125v1.
[2]. Ab initio structure factors for spin-dependent dark matter direct detection. B.S. Hu, et al. Phys. Rev. Lett. 128, 072502 (2022). arXiv:2109.00193.
[1]. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. B.S. Hu, W.G. Jiang, T. Miyagi, Z.H, Sun, et al. Nat. Phys. 118, 1196 (2022) arXiv:2112.01125v1.
[2]. Ab initio structure factors for spin-dependent dark matter direct detection. B.S. Hu, et al. Phys. Rev. Lett. 128, 072502 (2022). arXiv:2109.00193.
–
Publication: [1]. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. B.S. Hu, W.G. Jiang, T. Miyagi, Z.H, Sun, et al. Nat. Phys. 118, 1196 (2022) arXiv:2112.01125v1.<br>[2]. Ab initio structure factors for spin-dependent dark matter direct detection. B.S. Hu, et al. Phys. Rev. Lett. 128, 072502 (2022). arXiv:2109.00193.
Presenters
-
Baishan Hu
Oak Ridge National Lab
Authors
-
Baishan Hu
Oak Ridge National Lab