APS Logo

Identification and analysis of two-pixel correlated events in BeEST Phase-III Data

ORAL

Abstract

The Beryllium Electron Capture in Superconducting Tunnel Junctions (BeEST) experiment measures Lithium-7 atomic recoils from the electron capture decay of Beryllium-7 as a precision search for neutrino-coupled BSM physics. Following the single-pixel demonstration in Phase-II, Phase-III uses a 6x6 grid of superconducting tunnel junction (STJ) detectors, allowing us to analyze spatial correlations and simultaneity between devices. Due to the sensitivity of the detector, there are external events that must be identified and filtered out for the creation of the final Phase-III limit. In this talk, we present a systematic analysis of two-pixel correlated events for their location, time, energy and pulse shape to identify anomalous events and hypothesize their origins. By examining the shape and occurrence of these events, we can understand and reduce systematic uncertainty in our data and contribute to the design of the Phase-IV detector array.

* The BeEST experiment is funded in part by the Gordon and Betty Moore Foundation (10.37807/GBMF11571), the DOE-SC Office of Nuclear Physics under Award Numbers DE-SC0021245 and DE-FG02-93ER40789, and the LLNL Laboratory Directed Research and Development program through Grants No. 19-FS-027 and No. 20-LW-006. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. The theoretical work was performed as part of the European Metrology Programme for Innovation and Research (EMPIR) Projects No. 17FUN02 MetroMMC and No. 20FUN09 PrimA-LTD. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344.

Presenters

  • Amii Lamm

    Colorado School of Mines

Authors

  • Amii Lamm

    Colorado School of Mines