APS Logo

Dynamics of ultrarelativistic charged particles with strong radiation reaction

ORAL

Abstract

Previous studies from the astrophysics and laser physics communities have identified an interesting

phenomenon wherein ultrarelativistic charged particles experiencing strong radiation reaction tend

to move along special directions fixed by the local electromagnetic field. In the relativity literature

these are known as the “principal null directions” (PNDs) of the Maxwell field. A particle in

this regime has “Aristotelian” dynamics in the sense that its velocity (rather than acceleration) is

determined by the local field. We study this Aristotelian equilibrium in detail, starting from the

Landau-Lifshitz equation describing charged particle motion including radiation reaction. Using a

Frenet-Serret frame adapted to the PNDs, we derive the Lorentz factor describing motion along the

local PND, together with drift velocities reflecting slower passage from one PND to another. We

derive conditions on the field configuration that are necessary for such an equilibrium to occur. We

demonstrate agreement of our analytic formulas with full numerical solutions of the Landau-Lifshitz

equation in the appropriate regim.

Publication: [1] E. Poisson, "An Introduction to the Lorentz-Dirac<br>equation," gr-qc/9912045. I, II<br>[2] L. D. Landau and E. M. Lifshitz, The Classical Theory<br>of Fields: Volume 2 (Course of Theoretical Physics<br>Series) 4th Edition. Butterworth-Heinemann, 1980. 1,<br>II, II<br>[3] S. E. Gralla, A. I. Harte, and R. M. Wald, "A Rigorous<br>Derivation of Electromagnetic Self-force," Phys. Rev. D<br>80 (2009) 024031, 0905.2391.<br>[4] A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and<br>C. H. Keitel, "Extremely high-intensity laser<br>interactions with fundamental quantum systems," Rev.<br>Mod. Phys. 84 (2012) 1177, 1111.3886. I, 1, II, II<br>[5] Fermi-LAT Collaboration, A. A. Abdo et al., "The<br>First Fermi Large Area Telescope Catalog of<br>Gamma-ray Pulsars," Astrophys. J. Suppl. 187 (2010)<br>460–494, 0910.1608. [Erratum: Astrophys.J.Suppl. 193,<br>22 (2011)]. I<br>[6] Fermi-LAT Collaboration, A. A. Abdo et al., "The<br>Second Fermi Large Area Telescope Catalog of<br>Gamma-ray Pulsars," Astrophys. J. Suppl. 208 (2013)<br>17, 1305.4385. I<br>[7] A. Gruzinov, "Aristotelian Electrodynamics solves the<br>Pulsar: Lower Efficiency of Strong Pulsars," 1303.4094.<br>I, 3, I, I, A 3, A 3<br>[8] A. Gruzinov, "Pulsar Emission Spectrum," arXiv<br>e-prints (Sept., 2013) arXiv:1309.6974, 1309.6974. A 3,<br>A 3<br>[9] J. P ´etri, "Pulsar gamma-ray emission in the radiation<br>reaction regime," Mon. Not. Roy. Astron. Soc. 484<br>(2019), no. 4, 5669–5691, 1901.11439.<br>[10] G. Cao and X. Yang, "Three-dimensional dissipative<br>pulsar magnetospheres with Aristotelian<br>electrodynamics," 1912.00335.<br>[11] G. Cao and X. Yang, "The Pulsar Gamma-Ray<br>Emission from High-resolution Dissipative<br>Magnetospheres," Astrophys. J. 925 (2022), no. 2, 130,<br>2104.09802.<br>[12] J. P ´etri, "Radiative pulsar magnetospheres: oblique<br>rotators," Mon. Not. Roy. Astron. Soc. 512 (2022),<br>no. 2, 2854, 2202.12712. I<br>[13] H.Herold, T. Ertl, and H. Ruder Mitteilungen der<br>Astronomischen Gesellschaft 63 (1985) 174. 3, I, A 1,<br>A 1, A 1, A 1<br>[14] L. Mestel, J. Robertson, Y.-M. Wang, and K. Westfold,<br>"The axisymmetric pulsar magnetosphere," Monthly<br>Notices of the Royal Astronomical Society 217 (1985),<br>no. 3, 443–484. I, 3, A 2, A 2, 8, A 2<br>[15] A. Gonoskov and M. Marklund, "Radiation-dominated<br>particle and plasma dynamics," Phys. Plasmas 25<br>(2018), no. 9, 093109, 1707.05749. 3, I, A 4, A 4, A 4,<br>A 4<br>[16] T. Jacobson, "Structure of Aristotelian<br>Electrodynamics," Phys. Rev. D 92 (2015), no. 2,<br>025029, 1504.07311. I, I, IV D<br>[17] R. Penrose and W. Rindler, SPINORS AND<br>SPACE-TIME. VOL. 2: SPINOR AND TWISTOR<br>METHODS IN SPACE-TIME GEOMETRY.<br>Cambridge Monographs on Mathematical Physics.<br>Cambridge University Press, 4, 1988. I<br>[18] B.Finkbeiner, H.Herold, T. Ertl, and H. Ruder<br>Astronomy and astrophysics 225 (1989) 479. I, A 1, A 1<br>[19] A. S. Samsonov, E. N. Nerush, and I. Y. Kostyukov,<br>"Asymptotic electron motion in the<br>strongly-radiation-dominated regime," Phys. Rev. A 98<br>(2018), no. 5, 053858, 1807.04071.<br>[20] R. Ekman, T. Heinzl, and A. Ilderton, "Exact solutions<br>in radiation reaction and the radiation-free direction,"<br>New J. Phys. 23 (2021), no. 5, 055001, 2102.11843.<br>[21] A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S.<br>Bulanov, "Charged particle motion and radiation in<br>strong electromagnetic fields," 2107.02161. I, A 4<br>[22] Y. Cai, S. Gralla, and V. Paschalidis in preparation. I, V<br>[23] N. Elkina, A. Fedotov, C. Herzing, and H. Ruhl,<br>"Accurate numerical simulation of radiation reaction<br>effects in strong electromagnetic fields."<br>arXiv:1401.7881, 2014. V<br>[24] H. Heintzmann and E. Schr ¨ufer, "Exact of the<br>Lorentz-Dirac equations of motion for charged particles<br>in constant electromagnetic fields," Phys. Rev. A 43<br>(1973), no. 3, 287–288. A 4<br>

Presenters

  • Yangyang Cai

    University of Arizona

Authors

  • Yangyang Cai

    University of Arizona

  • Samuel E Gralla

    University of Arizona

  • Vasileios Paschalidis

    University of Arizona