APS Logo

Efficient fully precessing gravitational waveforms for binaries with neutron stars

ORAL

Abstract

We construct an efficient frequency domain waveform for generic circular compact object binaries that include neutron stars. The orbital precession is solved on the radiation reaction timescale (and then transformed to the frequency domain), which is used to map the non-precessional waveform from the source frame of the binary to the lab frame. The treatment of orbital precession is different from that for precessional binary black holes, as χeff is no longer conserved due to the spin-induced quadrupole moments of neutron stars. We show that the new waveform achieves ≤10-4 mismatch compared with waveforms generated by numerically evolved precession for neutron star-black hole systems for ≥90% configurations with component mass/spin magnitude assumed in the analysis and randomized initial spin directions. We expect this waveform to be useful to test the nature of the mass-gap objects similar to the one discovered in GW 190814 by measuring their spin-induced quadrupole moments, as it is possible that these mass-gap objects are rapidly spinning.

Publication: https://arxiv.org/abs/2212.04657<br>DZ13025

Presenters

  • Michael Lahaye

    University of Guelph

Authors

  • Michael Lahaye

    University of Guelph

  • Huan Yang

    Perimeter Inst for Theo Phys

  • Béatrice P Bonga

    Radboud University

  • Zhenwei Lyu

    Peking University