Moiré Gravity
ORAL
Abstract
Twisted bilayer graphene is a rich condensed matter system, which allows to tune energy scales and electronic correlations. The low-energy physics of the resulting moiré structure can be mathematically described in terms of a diffeomorphism in a continuum formulation. We stress that twisting is just one example of moiré diffeomorphisms. Another particularly simple and experimentally relevant transformation is a homogeneous isomorphic strain of one of the layers, which gives rise to a nearly-identical moiré pattern (rotated by 90○ relative to the twisted structure). We further observe that low-energy physics of the strained bilayer graphene takes the form of a theory of fermions tunneling between two curved space-times. Conformal transformation of the metrics results in emergent “moiré energy scales”, which can be tuned to be much lower than those in the native theory. This observation generalizes to an arbitrary space-time dimension with or without an underlying lattice or periodicity and suggests a family of toy models of “moiré gravity” with low emergent energy scales. Motivated by these analogies, we present an explicit toy construction of moiré gravity, where the effective cosmological constant can be made arbitrarily small.
–
Publication: https://arxiv.org/abs/2108.04252
Presenters
-
Alireza Parhizkar
University of Maryland, College Park
Authors
-
Alireza Parhizkar
University of Maryland, College Park
-
Victor M Galitski
University of Maryland