Exploring the Rich Physics of Triangular Lattice Antiferromagnets with Neutron Scattering

ORAL

Abstract

In geometrically frustrated magnets, the spatial arrangement of magnetic moments on a lattice prevents competing magnetic interactions from being simultaneously satisfied, often leading to exotic magnetic behavior. The canonical example of geometrical frustration consists of antiferromagnetically coupled spins populating a triangular lattice. Here, we explore the compound TmMgGaO$_{\mathrm{4}}$, which hosts Ising-like Tm$^{\mathrm{3+}}$ magnetic moments on a perfect triangular lattice. Using magnetic pair distribution function analysis of neutron scattering data, we study the short-range magnetic correlations present at low temperatures. The results suggest a surprising connection to a topological Kosterlitz-Thouless transition at low temperature, showcasing the rich behavior observed in geometrically frustrated magnets.

Authors

  • Benjamin Frandsen

    Brigham Young University

  • Raju Baral

    Brigham Young University

  • Barry Ritchie

    University of New Mexico, Ion Linac Systems, Tech-X Corporation, Los Alamos National Laboratory, Ronald Reagan UCLA Medical Center, Brigham Young University, Brigham Young University - Provo, United States Air Force Academy, university of Michigan, SISSA, Trieste, Stanford University, Worcester Polytechnic Institute, Grinnell College, Department of Physics, Arizona State University, Brookhaven National Laboratory, University of Southern California, Argonne National Laboratory, Department of Electrical and Computer Engineering, University of New Mexico, Department of Electrical and Computer Engineering and Department of Mechanical Engineering, University of New Mexico, Lock Haven University, Illinois State University, Department of Physics, Utah State University, Logan, Utah, 84322, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Kyoto University, University of Guadalajara, University of Florida, Embry-Riddle Aeronautical University, Air Force Research Laboratory, Space Vehicles Directorate, Assurance Technology Corporation, Carlisle, MA, Georgia Tech Research Institute, Atlanta, GA, Utah State University, Georgia Institute of Technology, University of Tennessee, Knoxville, Arizona State University, Department of Physics, United States Air Force Academy, 80840 USAFA, CO, USA, Shaffer Consulting Inc, Max Planck Institute for Astrophysics, Harvard University, Max Planck Institute for Gravitational Physics, Albert Einstein Institute, ASU

  • Barry Ritchie

    University of New Mexico, Ion Linac Systems, Tech-X Corporation, Los Alamos National Laboratory, Ronald Reagan UCLA Medical Center, Brigham Young University, Brigham Young University - Provo, United States Air Force Academy, university of Michigan, SISSA, Trieste, Stanford University, Worcester Polytechnic Institute, Grinnell College, Department of Physics, Arizona State University, Brookhaven National Laboratory, University of Southern California, Argonne National Laboratory, Department of Electrical and Computer Engineering, University of New Mexico, Department of Electrical and Computer Engineering and Department of Mechanical Engineering, University of New Mexico, Lock Haven University, Illinois State University, Department of Physics, Utah State University, Logan, Utah, 84322, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Kyoto University, University of Guadalajara, University of Florida, Embry-Riddle Aeronautical University, Air Force Research Laboratory, Space Vehicles Directorate, Assurance Technology Corporation, Carlisle, MA, Georgia Tech Research Institute, Atlanta, GA, Utah State University, Georgia Institute of Technology, University of Tennessee, Knoxville, Arizona State University, Department of Physics, United States Air Force Academy, 80840 USAFA, CO, USA, Shaffer Consulting Inc, Max Planck Institute for Astrophysics, Harvard University, Max Planck Institute for Gravitational Physics, Albert Einstein Institute, ASU

  • Barry Ritchie

    University of New Mexico, Ion Linac Systems, Tech-X Corporation, Los Alamos National Laboratory, Ronald Reagan UCLA Medical Center, Brigham Young University, Brigham Young University - Provo, United States Air Force Academy, university of Michigan, SISSA, Trieste, Stanford University, Worcester Polytechnic Institute, Grinnell College, Department of Physics, Arizona State University, Brookhaven National Laboratory, University of Southern California, Argonne National Laboratory, Department of Electrical and Computer Engineering, University of New Mexico, Department of Electrical and Computer Engineering and Department of Mechanical Engineering, University of New Mexico, Lock Haven University, Illinois State University, Department of Physics, Utah State University, Logan, Utah, 84322, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Kyoto University, University of Guadalajara, University of Florida, Embry-Riddle Aeronautical University, Air Force Research Laboratory, Space Vehicles Directorate, Assurance Technology Corporation, Carlisle, MA, Georgia Tech Research Institute, Atlanta, GA, Utah State University, Georgia Institute of Technology, University of Tennessee, Knoxville, Arizona State University, Department of Physics, United States Air Force Academy, 80840 USAFA, CO, USA, Shaffer Consulting Inc, Max Planck Institute for Astrophysics, Harvard University, Max Planck Institute for Gravitational Physics, Albert Einstein Institute, ASU