A Unified Description of the Electrical Properties of Low-Density Polyethylene via the Dispersion Parameter

ORAL

Abstract

Low-density polyethylene is a prototypical highly disordered insulating material. This ubiquitous polymer has a variety of applications from spacecraft charging to high voltage DC power cable insulation. Therefore, the electrical properties are of great interest. The dispersion parameter, which originally appeared in a semi-empirical model to describe anomalies in permittivity data, is central to an understanding of these electrical properties. This parameter depends linearly on either temperature (low field regime) or on electric field (high field regime) and is scaled by the reciprocal of a characteristic energy. When the dispersion parameter reaches one, a transition from dispersive to non-dispersive transport occurs. Scher and Montroll spurred an ``anomalous to obvious phase transition'' by describing the anomalous transit times in dispersive materials with use of long-tailed hopping-time distribution functions characterized by the dispersion parameter. Direct measurements of the evolution of embedded charge distributions via pulsed electroacoustic measurements show a dispersive to non-dispersive transport transition occurs at an electric field strength of \textasciitilde 10$^{\mathrm{8}}$ V/m. Measurements of the temperature transition in constant voltage conductivity data measured by our group and extensive data from the literature are presented and described in terms of the dispersion parameter. Other models and measurements---including those for AC and DC conductivity, radiation induced conductivity, charge decay, and electrostatic breakdown---also depend on the dispersion parameter.

Authors

  • Zachary Gibson

    Utah State University

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago