How to Predict What to Measure

ORAL

Abstract

Experimentally produced alloys, with useful properties for applications, are often composed of many elements. Computational efforts to study many element systems are inhibited by the vast search space as the number of possible configurations scales dramatically with the number of elements. We present a machine learning approach which allows us to identify a set of configurations in the CoNbV system for training of our model and predicting configurations of interest among the rest of the space. We present the process, for training the potential and identifying structures of interest. We show how the identified ternary configurations can then be extended to higher element models to guide the search for what to measure in the many element systems of experimental interest.

Authors

  • Brayden Bekker

    Brigham Young University

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago