Casimir torque on chains of nanoparticles

ORAL

Abstract

The fluctuations of the electromagnetic field give rise to interesting phenomena such as Casimir interactions, which can lead to very strong noncontact forces and torques in the nanoscale. Although these interactions produce friction and stiction that may affect the moving parts of nanoscale devices, they also constitute an opportunity to achieve an efficient transfer of momentum at the nanoscale. To that end, here, we explore the dynamics of a chain of rotating nanoparticles mediated by the Casimir torque. We derive an analytical expression describing the angular momentum transfer and show that for angular velocities that are currently achievable, the dynamics of an arbitrary chain can be determined from a set of natural modes and their corresponding decay rates. Exploiting this methodology we study different examples of exotic rotational dynamics. Our results show that Casimir interactions can mediate an efficient transfer of angular momentum at the nanoscale and, therefore, have important implications for the design of nanomechanical devices.

Authors

  • Stephen Sanders

    University of New Mexico

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago

  • John Spence

    Brigham Young University, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, Department of Scientific Research, The Metropolitan Museum of Art, New York, NY 10028, Century Darkroom, Toronto, ON M4M 2S1, Canada, Colorado State University, University of Waterloo, Southern Connecticut State University, Clemson University, Oak Ridge National Laboratory, University of Bordeaux, BYU REU Program, New Mexico State University, Arizona State University, Biodesign Institute, Center for Applied Structural Discovery, University of Utah, University of Hawaii, Johns Hopkins University, Embry-Riddle Aeronautical University, Arizona State University, Utah State University, Department of Physics, United States Air Force Academy, Department of Chemistry, Case Western Reserve University, Air Force Research Laboratory, Wright-Patterson Air Force Base, United States Air Force Academy, Lousiana State University, Brigham Young University - Provo, The University of New Mexico, Department of Physics and Astronomy, Brigham Young University, SLAC National Accelerator Laboratory, Department of Chemistry, Brigham Young University, Department of Materials, Devices, and Energy Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA, Center for Memory and Recording research, UCSD, Advanced Photon Source, Argonne National Laboratory, University of New Mexico, Los Alamos National Laboratory, University of Chicago