Cavity enhanced high power 243 nm CW laser for two-photon laser cooling of hydrogen.

ORAL

Abstract

High power 243 nm CW laser sources have long enabled spectroscopic studies of atomic hydrogen through excitation of the 1S-2S 2-photon transition. With sufficient power, such lasers could also allow for two-photon laser cooling of hydrogen. In this talk, we present a 243 nm laser system with 750 mW of average power. We couple this radiation to a simple linear optical cavity and obtain 30 W of intracavity power. This power level is sufficient for one-dimensional laser cooling if it can be overlapped with a cryogenic beam of magnetically guided atomic hydrogen.

Authors

  • Zakary Burkley

    Colorado State University

  • Colin Roberts

    High Precision Devices, Boulder, CO, Raytheon, Tucson, AZ, Seagate Technology, Minneapolis, MN, Ball Aerospace (retired), Bloomfield, CO, New Mexico State University, Brigham Young University, Colorado State University, Heinrich-Heine-Universitat Dusseldorf, National Security Technologies, Universidad de Buenos Aires, Colorado State Univ, Colorado College, Utah State University, Advisor, Material Physics Group, Utah State University, Box Elder Innovations, LLC, JILA and Department of Physics, CU Boulder, JILA and Department of Mathematics, CU Boulder, Colorado State University, Fort Collins, Colorado 80523, USA, JILA, NIST and the University of Colorado, Boulder, NIST, University of Colorado / NIST, University of Colorado/JILA, Colorado Sch of Mines, Colorado School of Mines, Southwestern Indian Polytechnic Institute, UC-Berkeley, Colorado State University, Fort Collins, CO, Wroclaw University of Science and Technology, Wroclaw, Poland, JILA, University of Colorado and NIST, Harvard University and Harvard-MIT Center for Ultracold Atoms, Univ of Colorado - Boulder, USAFA, Univ of Denver, Boyce Research Initiatives and Educational Foundation, Brilliant Sky Observatory, San Diego Mesa College, Utah Valley University, University of Colorado Boulder, Brigham Young Univ - Provo, Oak Ridge National Laboratory, University of Sherbrooke, NIST Boulder, Universidad Complutense de Madrid, Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Co 80525, Lawrence Livermore National Lab. (United States), Physics Department, Colorado State University, Fort Collins, Co 80525, JILA, Department of Physics, University of Colorado Boulder, Los Alamos National Laboratory, University of Alabama, University of Wyoming, University of Guelph, University of Guelph, Canadian Light source

  • Colin Roberts

    High Precision Devices, Boulder, CO, Raytheon, Tucson, AZ, Seagate Technology, Minneapolis, MN, Ball Aerospace (retired), Bloomfield, CO, New Mexico State University, Brigham Young University, Colorado State University, Heinrich-Heine-Universitat Dusseldorf, National Security Technologies, Universidad de Buenos Aires, Colorado State Univ, Colorado College, Utah State University, Advisor, Material Physics Group, Utah State University, Box Elder Innovations, LLC, JILA and Department of Physics, CU Boulder, JILA and Department of Mathematics, CU Boulder, Colorado State University, Fort Collins, Colorado 80523, USA, JILA, NIST and the University of Colorado, Boulder, NIST, University of Colorado / NIST, University of Colorado/JILA, Colorado Sch of Mines, Colorado School of Mines, Southwestern Indian Polytechnic Institute, UC-Berkeley, Colorado State University, Fort Collins, CO, Wroclaw University of Science and Technology, Wroclaw, Poland, JILA, University of Colorado and NIST, Harvard University and Harvard-MIT Center for Ultracold Atoms, Univ of Colorado - Boulder, USAFA, Univ of Denver, Boyce Research Initiatives and Educational Foundation, Brilliant Sky Observatory, San Diego Mesa College, Utah Valley University, University of Colorado Boulder, Brigham Young Univ - Provo, Oak Ridge National Laboratory, University of Sherbrooke, NIST Boulder, Universidad Complutense de Madrid, Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Co 80525, Lawrence Livermore National Lab. (United States), Physics Department, Colorado State University, Fort Collins, Co 80525, JILA, Department of Physics, University of Colorado Boulder, Los Alamos National Laboratory, University of Alabama, University of Wyoming, University of Guelph, University of Guelph, Canadian Light source

  • Colin Roberts

    High Precision Devices, Boulder, CO, Raytheon, Tucson, AZ, Seagate Technology, Minneapolis, MN, Ball Aerospace (retired), Bloomfield, CO, New Mexico State University, Brigham Young University, Colorado State University, Heinrich-Heine-Universitat Dusseldorf, National Security Technologies, Universidad de Buenos Aires, Colorado State Univ, Colorado College, Utah State University, Advisor, Material Physics Group, Utah State University, Box Elder Innovations, LLC, JILA and Department of Physics, CU Boulder, JILA and Department of Mathematics, CU Boulder, Colorado State University, Fort Collins, Colorado 80523, USA, JILA, NIST and the University of Colorado, Boulder, NIST, University of Colorado / NIST, University of Colorado/JILA, Colorado Sch of Mines, Colorado School of Mines, Southwestern Indian Polytechnic Institute, UC-Berkeley, Colorado State University, Fort Collins, CO, Wroclaw University of Science and Technology, Wroclaw, Poland, JILA, University of Colorado and NIST, Harvard University and Harvard-MIT Center for Ultracold Atoms, Univ of Colorado - Boulder, USAFA, Univ of Denver, Boyce Research Initiatives and Educational Foundation, Brilliant Sky Observatory, San Diego Mesa College, Utah Valley University, University of Colorado Boulder, Brigham Young Univ - Provo, Oak Ridge National Laboratory, University of Sherbrooke, NIST Boulder, Universidad Complutense de Madrid, Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Co 80525, Lawrence Livermore National Lab. (United States), Physics Department, Colorado State University, Fort Collins, Co 80525, JILA, Department of Physics, University of Colorado Boulder, Los Alamos National Laboratory, University of Alabama, University of Wyoming, University of Guelph, University of Guelph, Canadian Light source

  • Colin Roberts

    High Precision Devices, Boulder, CO, Raytheon, Tucson, AZ, Seagate Technology, Minneapolis, MN, Ball Aerospace (retired), Bloomfield, CO, New Mexico State University, Brigham Young University, Colorado State University, Heinrich-Heine-Universitat Dusseldorf, National Security Technologies, Universidad de Buenos Aires, Colorado State Univ, Colorado College, Utah State University, Advisor, Material Physics Group, Utah State University, Box Elder Innovations, LLC, JILA and Department of Physics, CU Boulder, JILA and Department of Mathematics, CU Boulder, Colorado State University, Fort Collins, Colorado 80523, USA, JILA, NIST and the University of Colorado, Boulder, NIST, University of Colorado / NIST, University of Colorado/JILA, Colorado Sch of Mines, Colorado School of Mines, Southwestern Indian Polytechnic Institute, UC-Berkeley, Colorado State University, Fort Collins, CO, Wroclaw University of Science and Technology, Wroclaw, Poland, JILA, University of Colorado and NIST, Harvard University and Harvard-MIT Center for Ultracold Atoms, Univ of Colorado - Boulder, USAFA, Univ of Denver, Boyce Research Initiatives and Educational Foundation, Brilliant Sky Observatory, San Diego Mesa College, Utah Valley University, University of Colorado Boulder, Brigham Young Univ - Provo, Oak Ridge National Laboratory, University of Sherbrooke, NIST Boulder, Universidad Complutense de Madrid, Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Co 80525, Lawrence Livermore National Lab. (United States), Physics Department, Colorado State University, Fort Collins, Co 80525, JILA, Department of Physics, University of Colorado Boulder, Los Alamos National Laboratory, University of Alabama, University of Wyoming, University of Guelph, University of Guelph, Canadian Light source