Calibration and validation of the PTW dynamic strength model for Cu using novel feedthrough hydrodynamic instability experiments

ORAL

Abstract

Hydrodynamic instabilities, e.g., the Rayleigh-Taylor can be used to deduce dynamic material strength at very high pressures and strain rates. The Ritchmyer-Meshkov Instability (RMI) can also be used, since it allows using precise diagnostics such as Transient Imaging Displacement Interferometry due to its slower linear growth rate. Experiments at Los Alamos National Laboratory used RMI to measure strength in polycrystalline copper with a novel approach, whereby the shock is applied directly on the perturbed surface using laser ablation and producing a perturbed shock that propagates through the sample thickness. The Preston-Tonks-Wallace (PTW) model, which is a proven material strength model at very high pressures and strain rates is used along with numerical simulations, to study the effects of initial amplitude and wavelength of the perturbations, dynamic strength of material, stability of the shock front, dynamic evolution of the amplitudes, and velocities of the perturbation imprinted on the back surface by the perturbed shock front. Simulation results obtained from using the PTW models were then compared and validated with experimental results for copper samples tested at pressures $\ge $ 8 GPa.

Authors

  • Sudrishti Gautam

    Arizona State University

  • Saul Opie

    Arizona State University

  • Elizabeth Fortin

    Arizona State University

  • Scott D. Bergesen

    Santa Fe Institute, Arizona State University, Department of Physics and Center for Biological Physics, Arizona State University, Brigham Young University Department of Physics and Astronomy, Brigham Young University, Utah Valley University, Dixie State College, Advisor, Student, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Laboratory, Colorado College, United States Air Force Academy, Georgia Institute of Technology, Utah State University, Brigham Young University - Idaho, Utah State University- Logan, National Institute of Standards and Technology, Humboldt State University, UC Santa Cruz, Institut de Chimie des Substances Naturelles, Arizona State Univ, University of Colorado at Colorado Springs, National Jewish Health, Department of Physics, The University of Texas at Austin, Department of Physics, New Mexico State University, U. S. Air Force Academy, Brigham Young Univ - Provo, University of New South Wales, University of Texas, University of Warwick, University of Louisiana, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA., Center for Materials Genomics, Department of Mechanical Engineering and Materials Science and Department of Physics, Duke University, Durham, North Ca, Duke University, Durham, North Carolina., Brigham Young University -- Provo, Utah, General Atomics -- San Diego, California, Department of Mathematics, University of British Columbia, Department of Physics, Arizona State University, UC Riverside, UMASS, STScI, NOAO, UT Austin, Texas A&M, Arizona State Univeristy, New Mexico State Univ, Los Alamos National Laboratory, Colorado State Univ, Department of Physics, Oregon State University, Colorado School of Mines, University of Alaska, Fairbanks, The Peac Institute of Multiscale Modeling, UNSW Canberra

  • Scott D. Bergesen

    Santa Fe Institute, Arizona State University, Department of Physics and Center for Biological Physics, Arizona State University, Brigham Young University Department of Physics and Astronomy, Brigham Young University, Utah Valley University, Dixie State College, Advisor, Student, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Laboratory, Colorado College, United States Air Force Academy, Georgia Institute of Technology, Utah State University, Brigham Young University - Idaho, Utah State University- Logan, National Institute of Standards and Technology, Humboldt State University, UC Santa Cruz, Institut de Chimie des Substances Naturelles, Arizona State Univ, University of Colorado at Colorado Springs, National Jewish Health, Department of Physics, The University of Texas at Austin, Department of Physics, New Mexico State University, U. S. Air Force Academy, Brigham Young Univ - Provo, University of New South Wales, University of Texas, University of Warwick, University of Louisiana, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA., Center for Materials Genomics, Department of Mechanical Engineering and Materials Science and Department of Physics, Duke University, Durham, North Ca, Duke University, Durham, North Carolina., Brigham Young University -- Provo, Utah, General Atomics -- San Diego, California, Department of Mathematics, University of British Columbia, Department of Physics, Arizona State University, UC Riverside, UMASS, STScI, NOAO, UT Austin, Texas A&M, Arizona State Univeristy, New Mexico State Univ, Los Alamos National Laboratory, Colorado State Univ, Department of Physics, Oregon State University, Colorado School of Mines, University of Alaska, Fairbanks, The Peac Institute of Multiscale Modeling, UNSW Canberra

  • Pedro Peralta

    Arizona State University