Modeling the Energy Dependent Cathodoluminescent Intensity of a Carbon Composite Material

ORAL

Abstract

The energy dependent spectral radiance from a carbon composite material under energetic (0.5-30 keV) electron bombardment was measured using visible-NIR cameras. Observed trends could not be accurately modeled using either a thin-film (penetrating electron) model which decreases with increasing electron energies or a bulk (non-penetrating electron) model which increases with increasing energies. However a linear combination of the two models, modeling thick and thin regions of luminescent polyimide above carbon particles was found to fit observed results much better. Electron microscope images of the sample were analyzed to independently determine the ratio of thick/thin sample areas which was found to reasonably match the ratio predicted by the cathodoluminescent model. A potentially more accurate model is also discussed, which uses distributions of dielectric thicknesses and incident electron energies.

Authors

  • Justin Christensen

    Utah State University

  • John Colton

    Brigham Young University Dept. of Physics and Astronomy, Brigham Young University, None, The College of William and Mary/Jefferson Lab, Brigham Young University-Idaho, Blue Ridge Research and Consulting LLC, Air Force Research Laboratory - Wright Patterson Air Force Base, Brigham Young Univ - Provo, Blue Ridge Research and Consulting, University of Utah, SRI International, Utah State University, Utah Valley University, Los Alamos National Laboratory, Professor, Graduate, United States Air Force Academy, Arizona State Univ, SiO2 NanoTech, Entrepix Inc, AFRL, Advisor, Brigham Young University- Provo, University of New Mexico, Univ of Utah, University of Wisconsin -- Madison, New Mexico Tech Physics Dept., Retired, Department of Physics and Astronomy, University of Utah, Department of Physics \& Astronomy, University of Hawai'i, JILA and University of Colorado, Boulder, National Institute of Standards and Technology, Boulder, University of Colorado, Boulder, Lawrence Berkeley National Laboratory, National Institute of Standards and Technology, Space Dynamics Lab, New Mexico Tech, BYU Professor, Brigham Young University -- Provo, Northern Arizona University, University of Colorado Boulder, Colorado State University, University of Utah, Department of Physics, New Mexico State University

  • John Colton

    Brigham Young University Dept. of Physics and Astronomy, Brigham Young University, None, The College of William and Mary/Jefferson Lab, Brigham Young University-Idaho, Blue Ridge Research and Consulting LLC, Air Force Research Laboratory - Wright Patterson Air Force Base, Brigham Young Univ - Provo, Blue Ridge Research and Consulting, University of Utah, SRI International, Utah State University, Utah Valley University, Los Alamos National Laboratory, Professor, Graduate, United States Air Force Academy, Arizona State Univ, SiO2 NanoTech, Entrepix Inc, AFRL, Advisor, Brigham Young University- Provo, University of New Mexico, Univ of Utah, University of Wisconsin -- Madison, New Mexico Tech Physics Dept., Retired, Department of Physics and Astronomy, University of Utah, Department of Physics \& Astronomy, University of Hawai'i, JILA and University of Colorado, Boulder, National Institute of Standards and Technology, Boulder, University of Colorado, Boulder, Lawrence Berkeley National Laboratory, National Institute of Standards and Technology, Space Dynamics Lab, New Mexico Tech, BYU Professor, Brigham Young University -- Provo, Northern Arizona University, University of Colorado Boulder, Colorado State University, University of Utah, Department of Physics, New Mexico State University

  • John Colton

    Brigham Young University Dept. of Physics and Astronomy, Brigham Young University, None, The College of William and Mary/Jefferson Lab, Brigham Young University-Idaho, Blue Ridge Research and Consulting LLC, Air Force Research Laboratory - Wright Patterson Air Force Base, Brigham Young Univ - Provo, Blue Ridge Research and Consulting, University of Utah, SRI International, Utah State University, Utah Valley University, Los Alamos National Laboratory, Professor, Graduate, United States Air Force Academy, Arizona State Univ, SiO2 NanoTech, Entrepix Inc, AFRL, Advisor, Brigham Young University- Provo, University of New Mexico, Univ of Utah, University of Wisconsin -- Madison, New Mexico Tech Physics Dept., Retired, Department of Physics and Astronomy, University of Utah, Department of Physics \& Astronomy, University of Hawai'i, JILA and University of Colorado, Boulder, National Institute of Standards and Technology, Boulder, University of Colorado, Boulder, Lawrence Berkeley National Laboratory, National Institute of Standards and Technology, Space Dynamics Lab, New Mexico Tech, BYU Professor, Brigham Young University -- Provo, Northern Arizona University, University of Colorado Boulder, Colorado State University, University of Utah, Department of Physics, New Mexico State University