Solar Active Longitudes Resulting from Thin Flux Tube Simulations in a Solar-like Convective Envelope

ORAL

Abstract

Solar observations show that the emergence of active features is distributed inhomogeneously in longitude according to sunspot activity, solar x-ray flares, and coronal streamers. In addition, an asymmetry exists between active region associated phenomena in the Northern and Southern hemispheres. Using a thin flux tube model in a rotating spherical shell of solar-like convective flows, we find that these simulated flux tubes tend to emerge asymmetrically in number in the Northern and Southern hemispheres, and emerge at preferred longitudes. The active longitudes our simulations produce often span across the equator between low latitudes of 15 degrees to -15 degrees, and persist and propagate prograde for multiple solar rotation periods. We suggest that the active longitudes in our simulation are the result of columnar, rotationally aligned giant cells present in the convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon could in part provide an explanation for the North/South asymmetry of active region emergence as well as active longitudes.

Authors

  • Maria Weber

    NCAR/High Altitude Observatory and Colorad State University

  • Norm Buchanan

    Brigham Young University, Stanford University, University of Central Florida, NCAR/High Altitude Observatory, Arizona Vitro-retinal consultants, University of Michigan, Arizona State University, University of Denver, Arizona State University Dept of Physics, Arizona State University Dept of Chemistry and Biochemistry, LASP, University of Colorado Boulder, Center for Atmospheric and Space Science, Utah State University, Dixie State College, Utah, USU Materials Physics Group, UVU Physics Department, Box Elder Innovations, Space Telescope Science Institute, Northern Kentucky University, Retired, Utah Valley University, Univ. of California, Los Angelos, Colorado State University, St. Petersburg Electro-technical University, Universidad Nacional Aut\'onoma de M\'exico, New Mexico State University, University of New Mexico, University of Wurtzberg, Theoretical Division, Los Alamos National Laboratory, National High Magnetic Field Laboratory, LANL, UCLA, Max-planck-Institut f\"{u}r Astronomie, W. M. Keck Observatory, University of Arizona, Nuclear Physics Group, Brigham Young University, GLOBALFOUNDRIES, IBM Systems and Technology Group, IBM Research Division, T.J. Watson Research Center, Sandia National Laboratory, NMSU, Military University of Technology, Warsaw, Poland, James Franck Institute and Department of Physics, University of Chicago, Department of Atmospheric Sciences, University of Washington, JISAO, University of Washington, New Mexico Institute of Mining and Technology, NorthWest Research Associates, University of Alaska, Fairbanks, Utah State University, New Mexico Tech, University of Cambridge, Los Alamos National Laboratory, RAPTOR Science, Institute of Space and Astronomical Science, Japanese Aerospace Exploration Agency, Weber State University, Department of Physics, New Mexico State University, BYU Physics, Physics Department, University of Arizona, ABQMR, University of Colorado at Boulder, SNL and CINT, Los Alamos National Lab, Center for Quantum Information and Control, University of Arizona, Center for Quantum Information and Control, University of New Mexico, University of Calgary, Colorado School of Mines

  • Norm Buchanan

    Brigham Young University, Stanford University, University of Central Florida, NCAR/High Altitude Observatory, Arizona Vitro-retinal consultants, University of Michigan, Arizona State University, University of Denver, Arizona State University Dept of Physics, Arizona State University Dept of Chemistry and Biochemistry, LASP, University of Colorado Boulder, Center for Atmospheric and Space Science, Utah State University, Dixie State College, Utah, USU Materials Physics Group, UVU Physics Department, Box Elder Innovations, Space Telescope Science Institute, Northern Kentucky University, Retired, Utah Valley University, Univ. of California, Los Angelos, Colorado State University, St. Petersburg Electro-technical University, Universidad Nacional Aut\'onoma de M\'exico, New Mexico State University, University of New Mexico, University of Wurtzberg, Theoretical Division, Los Alamos National Laboratory, National High Magnetic Field Laboratory, LANL, UCLA, Max-planck-Institut f\"{u}r Astronomie, W. M. Keck Observatory, University of Arizona, Nuclear Physics Group, Brigham Young University, GLOBALFOUNDRIES, IBM Systems and Technology Group, IBM Research Division, T.J. Watson Research Center, Sandia National Laboratory, NMSU, Military University of Technology, Warsaw, Poland, James Franck Institute and Department of Physics, University of Chicago, Department of Atmospheric Sciences, University of Washington, JISAO, University of Washington, New Mexico Institute of Mining and Technology, NorthWest Research Associates, University of Alaska, Fairbanks, Utah State University, New Mexico Tech, University of Cambridge, Los Alamos National Laboratory, RAPTOR Science, Institute of Space and Astronomical Science, Japanese Aerospace Exploration Agency, Weber State University, Department of Physics, New Mexico State University, BYU Physics, Physics Department, University of Arizona, ABQMR, University of Colorado at Boulder, SNL and CINT, Los Alamos National Lab, Center for Quantum Information and Control, University of Arizona, Center for Quantum Information and Control, University of New Mexico, University of Calgary, Colorado School of Mines