Photolithography Process using Extreme Ultraviolet LASER

POSTER

Abstract

We have developed a variety of high-resolution and high-accuracy nanofabrication techniques. They are capable of high resolution nanopatterning on the film of HSQ, which is used as mask later in the pattern transfer. The nanopatterns, which is formed by exposure from 46.9nm table top EUV capillary discharge laser made by CSU, is transferred faithfully down to a gold layer underneath by anisotropic reactive ion etching (RIE) equipment. The equipment has the capability of temperature control and feedback from a thickness monitor. A 10nm error of etching height has been achieved.

Authors

  • Wei Li

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Mario Marconi