Optical Properties of Epitaxial Graphene

POSTER

Abstract

Spectroscopic ellipsometry in the range from 0.75 to 9 eV was used to investigate epitaxial graphene grown by Si sublimation on 4H, 6H and 3C SiC single crystal substrates. The graphene on Si- terminated SiC is relatively thin with low sheet charge density and mobility compared to the graphene grown on the C-terminated face which has higher charge density and mobility but is also covered with graphitic layers. The parametrized model dielectric function of graphene is composed of three Lorentz oscillators accounting for Drude-like free-charge carrier excitation and band-band transition in the range from 3.6 to 4.4 eV. The interface between the graphene and the substrate was described in our optical model using a simple Bruggeman effective medium approach. Furthermore, a large area map of 3025pt over a spectral range of 0.75- 5.35eV on a 1.5x1.7 cm graphene on Si-terminated 6H SiC substrate revealed distinct variations in the ellipsometric angles Psi and Delta suggesting a variation in the graphene layer as well as the interface layer thickness. \newline

Authors

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • M. Spies

    New Mexico State University

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab

  • Young-Yeal Song

    Brigham Young University, Colorado School of Mines, Colorado State University, Yale University, Department of Physics and Astronomy, Brigham Young University, Department of Mechanical Engineering, University of Utah, JILA, NIST and University of Colorado, University of Arizona, MIT, National Institute for Materials Science, Japan, Department of Mechanical Engineering, Brigham Young University, University of New Mexico, Iowa State University, Los Alamos National Lab XCP-2, Utah State University, Weber State University, New Mexico State University, College of Optical Science, University of Arizona, University of Nebraska, Lincoln, J.A. Woollam Co., U.S. Naval Research Laboratory, Arizona State University, BYU Nuclear Physics Group, Brigham Young University Physics and Astronomy, Los Alamos National Laboratory, University of Tsukuba, Japan, Colorado State University, NSF ERC for EUV science and technology, Center for Functional Nanomaterials, Brookhaven National Laboratory, University of Wisconsin, Madison, Utah Valley University, Argonne National Lab