New structures in Pd-rich ordered alloys

ORAL

Abstract

An intriguing intermetallic structure with 8:1 stoichiometry was discovered in the 1950s in the Pt-Ti system. Since then a handful of other Pt/Pd/Ni binary systems have been observed to exhibit this curious structure (Pt$_8$Zr, Pd$_8$Mo, Ni$_8$Nb, etc). This ordered structure can significantly increase the hardness of an alloy. For jewelry applications involving Pt and Pd, international hallmarking standards require that the alloys be at least 95\% pure by weight. However, Pt- and Pd-rich alloys are often soft when purity is high if the minority atoms are disordered. Because the 8:1 structure maintains a high weight percentage of Pt/Pd, it can satisfy purity standards while increasing performance. Recent calculations and experiments suggest that the 8:1 structure may form in about 20 previously unsuspected Pt/Pd binary systems. Using first-principles calculations and cluster expansion modeling, we have performed a ground state search to find the stable structures in Pd-Nb and Pd-Cu. In collaboration with Candace Lang's group at University of Capetown South Africa, we are working to experimentally validate the predicted ground states.

Authors

  • Jacqueline Corbitt

    Brigham Young University - Provo

  • Andrew Polemi

    Utah State University, Brigham Young University, University of Pennsylvania, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, High Altitude Observatory, University of Colorado at Boulder, Massachutes Institute of Technology, Utah Valley University, University of New Hampshire, Applied Physics Laboratory, Johns Hopkins University, University of Montana, Southwest Research Institute, University of Southern California, Lockheed Martin Advanced Technology Center, University of Chicago, Massachusetts Institute of Technology, SciPrint.org, Centre National de la Recherche Scientifique, Colorado State University, V. Alecsandri College, Bacau, Romania, Colorado School of Mines, National Renewable Energy Laboratory, Utah State University, Department of Physics, Brigham Young University, Provo, Huntsman Cancer Institute, Brigham Young University - Idaho, University of Arizona, Florida State University, Weber State University, Brigham Young University - Provo, New Mexico State University, Colorado State University, Fort Collins, CO 80523

  • Andrew Polemi

    Utah State University, Brigham Young University, University of Pennsylvania, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, High Altitude Observatory, University of Colorado at Boulder, Massachutes Institute of Technology, Utah Valley University, University of New Hampshire, Applied Physics Laboratory, Johns Hopkins University, University of Montana, Southwest Research Institute, University of Southern California, Lockheed Martin Advanced Technology Center, University of Chicago, Massachusetts Institute of Technology, SciPrint.org, Centre National de la Recherche Scientifique, Colorado State University, V. Alecsandri College, Bacau, Romania, Colorado School of Mines, National Renewable Energy Laboratory, Utah State University, Department of Physics, Brigham Young University, Provo, Huntsman Cancer Institute, Brigham Young University - Idaho, University of Arizona, Florida State University, Weber State University, Brigham Young University - Provo, New Mexico State University, Colorado State University, Fort Collins, CO 80523