Ordered Magnesium-Lithium alloys

ORAL

Abstract

Emerging technologies increasingly depend on the production of ultra-lightweight materials. Magnesium-lithium (MgLi) alloys are the lightest metallic alloys, having densities near that of plastics, and are strong enough to be used in a variety of high- performance applications. Although considerable work has been done on the MgLi system, little is known regarding potential ordered phases. An analysis of the system with first-principles methods revealed an unexpected wealth of stable zero- temperature phases. Of particular practical interest are configurations containing more than 13 atomic percent lithium, as they will be more ductile due to partial or complete formation on a cubic lattice. The analysis was extended to finite temperature using a Monte Carlo algorithm on large lattices with periodic boundary conditions. Discontinuities in specific heat measurements revealed order-disorder transition temperatures in the range 200-400K. Given the comparatively low melting point of Li ($\sim$450K), kinetics at these temperatures may be sufficient to permit spontaneous partial ordering for Li rich alloys.

Authors

  • Richard Taylor

    Brigham Young University

  • John Poate

    Brigham Young University, Los Alamos National Laboratory, Department of Physics and Astronomy, University of Utah, USA, MV Systems, Inc., USA, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Abteilung Silizium-Photovoltaik, Germany, Colorado School of Mines, Department of Physics, USA, Georgia Institute of Technology, Arizona State University, Physics Department of Babolsar University, Iran, Physics Department, New Mexico State University, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA, Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA, Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA, Colorado State University, University of Wisconsin, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, BYU-Provo, Michigan Technical University and Pierre Auger Collaboration, University of Colorado, Colorado School of Mines, Department of Physics, Colorado State University, Department of Physics, Cornell University, NASA, University of Massachusetts at Amherst, University of Massachusetss at Amherst, APS President, Harvard University, Society of Physics Students, Duke University, Computer Science, Brigham Young University, Chemistry \& Biochemistry, Brigham Young University, University of Arizona, University of Utah, Kansas State Univ., Bethel University, University of New Mexico, Stanford University, JILA, University of Colorado at Boulder, NIST, JILA, University of Colorado at Boulder, National Renewable Energy Laboratory, University of Denver, University of Colorado, Boulder, NREL, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287- 1604, USA, DU, ERI, Eleanor Roosevelt Institute (ERI), Cerro Tololo Interamerican Observatory, Utah State University, Center for Atmospheric and Space Sciences, Sciprint.org, University of Colorado at Boulder, JILA and University of Colorado, Kirchhoff Institute for Physics, University of Heidelberg, Utah Valley University, University of New South Wales, San Francisco State University, Weber State University, Cambridge University, Department of Physics and Astronomy, University of Utah, Kansas State University, Columbia University, NY, University of Colorado/JILA, Vice-President for Research and Technology Transfer, Colorado School of Mines

  • John Poate

    Brigham Young University, Los Alamos National Laboratory, Department of Physics and Astronomy, University of Utah, USA, MV Systems, Inc., USA, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Abteilung Silizium-Photovoltaik, Germany, Colorado School of Mines, Department of Physics, USA, Georgia Institute of Technology, Arizona State University, Physics Department of Babolsar University, Iran, Physics Department, New Mexico State University, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA, Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA, Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA, Colorado State University, University of Wisconsin, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, BYU-Provo, Michigan Technical University and Pierre Auger Collaboration, University of Colorado, Colorado School of Mines, Department of Physics, Colorado State University, Department of Physics, Cornell University, NASA, University of Massachusetts at Amherst, University of Massachusetss at Amherst, APS President, Harvard University, Society of Physics Students, Duke University, Computer Science, Brigham Young University, Chemistry \& Biochemistry, Brigham Young University, University of Arizona, University of Utah, Kansas State Univ., Bethel University, University of New Mexico, Stanford University, JILA, University of Colorado at Boulder, NIST, JILA, University of Colorado at Boulder, National Renewable Energy Laboratory, University of Denver, University of Colorado, Boulder, NREL, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287- 1604, USA, DU, ERI, Eleanor Roosevelt Institute (ERI), Cerro Tololo Interamerican Observatory, Utah State University, Center for Atmospheric and Space Sciences, Sciprint.org, University of Colorado at Boulder, JILA and University of Colorado, Kirchhoff Institute for Physics, University of Heidelberg, Utah Valley University, University of New South Wales, San Francisco State University, Weber State University, Cambridge University, Department of Physics and Astronomy, University of Utah, Kansas State University, Columbia University, NY, University of Colorado/JILA, Vice-President for Research and Technology Transfer, Colorado School of Mines