Preliminary results from a new Auger fluorescence detector drum calibration light source

ORAL

Abstract

A new revision of electronics for Auger Observatory fluorescence detector drum calibration is in final completion stage now. The drum light source design is based on a new 365nm high power LED produced by Nichia. In this report we will present preliminary results on a spectrum of the drum light source and the influence of ambient temperature, pulse rate and pulse current amplitude on the drum spectrum.

Authors

  • Alexei Dorofeev

    Colorado State University

  • Jeffrey Brack

    Colorado State University

  • Robert Cope

    Colorado State University

  • Ben Gookin

    Colorado State University

  • John Harton

    Colorado State University

  • John Poate

    Brigham Young University, Los Alamos National Laboratory, Department of Physics and Astronomy, University of Utah, USA, MV Systems, Inc., USA, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Abteilung Silizium-Photovoltaik, Germany, Colorado School of Mines, Department of Physics, USA, Georgia Institute of Technology, Arizona State University, Physics Department of Babolsar University, Iran, Physics Department, New Mexico State University, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA, Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA, Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA, Colorado State University, University of Wisconsin, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, BYU-Provo, Michigan Technical University and Pierre Auger Collaboration, University of Colorado, Colorado School of Mines, Department of Physics, Colorado State University, Department of Physics, Cornell University, NASA, University of Massachusetts at Amherst, University of Massachusetss at Amherst, APS President, Harvard University, Society of Physics Students, Duke University, Computer Science, Brigham Young University, Chemistry \& Biochemistry, Brigham Young University, University of Arizona, University of Utah, Kansas State Univ., Bethel University, University of New Mexico, Stanford University, JILA, University of Colorado at Boulder, NIST, JILA, University of Colorado at Boulder, National Renewable Energy Laboratory, University of Denver, University of Colorado, Boulder, NREL, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287- 1604, USA, DU, ERI, Eleanor Roosevelt Institute (ERI), Cerro Tololo Interamerican Observatory, Utah State University, Center for Atmospheric and Space Sciences, Sciprint.org, University of Colorado at Boulder, JILA and University of Colorado, Kirchhoff Institute for Physics, University of Heidelberg, Utah Valley University, University of New South Wales, San Francisco State University, Weber State University, Cambridge University, Department of Physics and Astronomy, University of Utah, Kansas State University, Columbia University, NY, University of Colorado/JILA, Vice-President for Research and Technology Transfer, Colorado School of Mines

  • Yevgeniy Petrov

    Colorado State University