Quantum-Mechanical Combinatorial Design of Solids with Target Properties

COFFEE_KLATCH · Invited

Abstract

One of the most striking aspects of solid-state physics is the diversity of structural forms in which crystals appear in Nature. The already rich repertoire of such (equilibrium) forms has recently been significantly enriched by the advent of artificial growth techniques (MBE, STM- atom positioning, etc) that can create desired structural forms, such as superlattices and geometric atomic clusters even in defiance of the rules of equilibrium thermodynamics. As is well known, different atomic configurations generally lead to different physical properties even at fixed chemical composition. While the most widely-known illustration of such ``form controls function'' rule is the dramatically different color, conductivity and hardness of the allotropical forms of pure carbon, the physics of semiconductor superstructures and nanostructures is full of striking examples of how optical, magnetic and transport properties depend sensitively on atomic configuration (e.g, compare the properties of random to ordered alloys). Yet, the history of material research generally proceeded via accidental discoveries of materials configuration with interesting physical property (semiconductivity, ferromagnetism; superconductivity etc). Given the ability of growing many different atomic configurations, and given the often sensitive dependence of physical properties on atomic configuration, makes one wonder: can one first articulate the desired target physical property, then search (within a class) for the configuration that has this property? This talk describes the recent steps made by solid-state theory and computational physics to address this ``Inverse Design'' problem. I will show how Genetic Algorithms, in combination with efficient (``Order N'') solutions to the Pseudopotential Schr\"odinger equation allow us to investigate astronomical spaces of atomic configurations in search of the structure with a target physical problem. Only a small fraction of all ($ \sim 10^{14}$ in our case) configurations need to be examined. Examples will include Band-Gap design in superlattices; architecture of impurity-clusters with desired optical properties, and Inverse Design of the Curie temperature in dilute magnetic systems.

Authors

  • John Poate

    Brigham Young University, Los Alamos National Laboratory, Department of Physics and Astronomy, University of Utah, USA, MV Systems, Inc., USA, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Abteilung Silizium-Photovoltaik, Germany, Colorado School of Mines, Department of Physics, USA, Georgia Institute of Technology, Arizona State University, Physics Department of Babolsar University, Iran, Physics Department, New Mexico State University, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA, Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA, Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA, Colorado State University, University of Wisconsin, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, BYU-Provo, Michigan Technical University and Pierre Auger Collaboration, University of Colorado, Colorado School of Mines, Department of Physics, Colorado State University, Department of Physics, Cornell University, NASA, University of Massachusetts at Amherst, University of Massachusetss at Amherst, APS President, Harvard University, Society of Physics Students, Duke University, Computer Science, Brigham Young University, Chemistry \& Biochemistry, Brigham Young University, University of Arizona, University of Utah, Kansas State Univ., Bethel University, University of New Mexico, Stanford University, JILA, University of Colorado at Boulder, NIST, JILA, University of Colorado at Boulder, National Renewable Energy Laboratory, University of Denver, University of Colorado, Boulder, NREL, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287- 1604, USA, DU, ERI, Eleanor Roosevelt Institute (ERI), Cerro Tololo Interamerican Observatory, Utah State University, Center for Atmospheric and Space Sciences, Sciprint.org, University of Colorado at Boulder, JILA and University of Colorado, Kirchhoff Institute for Physics, University of Heidelberg, Utah Valley University, University of New South Wales, San Francisco State University, Weber State University, Cambridge University, Department of Physics and Astronomy, University of Utah, Kansas State University, Columbia University, NY, University of Colorado/JILA, Vice-President for Research and Technology Transfer, Colorado School of Mines