Complex conductivity studies in UTX compounds

POSTER

Abstract

We have performed RF skin depth measurements of selected uranium compounds in applied magnetic fields up to 50 T. This technique is relatively new, as applied to metallic samples but is a useful probe of magnetotransport since the skin depth can be simply related to the magnetoresistance.

Authors

  • Sourav Adak

    New Mexico State University

  • Karunakar Kothapalli

    New Mexico State University

  • Seth Putterman

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA, Department of Physics, Arizona State University, Tempe, AZ 85287, USA, College of Optical Sciences, University of Arizona, Colorado State University, University of Virginia, Auburn University, Northern Kentucky University, Utah Valley State College, Brigham Young University, Arizona State University, University of Amsterdam, New Mexico State university, University of Minesota, Pulse Field Facility, NHMFL, LANL, NM, Institute of Physics ASCR , Czech Republic, University of Minesota-Twin City, New Mexico State University, Director, Advanced Photon Source, Argonne National Lab, Australian Synchotron Source, Advanced Photon Source, Argonne National Lab, University of Arizona, U.S. Naval Research Laboratory, Wellesley College, Observatoire de Paris, France, Freie Universitat Berlin, Florida State Univ., Univ. Sci. Tech. China, Iowa State University, Lawrence Livermore National Laboratory, Mahabad Azad University, Carnegie Mellon University, Tempe Preparatory Academy, University of California, Los Angeles

  • Heinz Nakotte

    New Mexico State University

  • Seth Putterman

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA, Department of Physics, Arizona State University, Tempe, AZ 85287, USA, College of Optical Sciences, University of Arizona, Colorado State University, University of Virginia, Auburn University, Northern Kentucky University, Utah Valley State College, Brigham Young University, Arizona State University, University of Amsterdam, New Mexico State university, University of Minesota, Pulse Field Facility, NHMFL, LANL, NM, Institute of Physics ASCR , Czech Republic, University of Minesota-Twin City, New Mexico State University, Director, Advanced Photon Source, Argonne National Lab, Australian Synchotron Source, Advanced Photon Source, Argonne National Lab, University of Arizona, U.S. Naval Research Laboratory, Wellesley College, Observatoire de Paris, France, Freie Universitat Berlin, Florida State Univ., Univ. Sci. Tech. China, Iowa State University, Lawrence Livermore National Laboratory, Mahabad Azad University, Carnegie Mellon University, Tempe Preparatory Academy, University of California, Los Angeles

  • Seth Putterman

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA, Department of Physics, Arizona State University, Tempe, AZ 85287, USA, College of Optical Sciences, University of Arizona, Colorado State University, University of Virginia, Auburn University, Northern Kentucky University, Utah Valley State College, Brigham Young University, Arizona State University, University of Amsterdam, New Mexico State university, University of Minesota, Pulse Field Facility, NHMFL, LANL, NM, Institute of Physics ASCR , Czech Republic, University of Minesota-Twin City, New Mexico State University, Director, Advanced Photon Source, Argonne National Lab, Australian Synchotron Source, Advanced Photon Source, Argonne National Lab, University of Arizona, U.S. Naval Research Laboratory, Wellesley College, Observatoire de Paris, France, Freie Universitat Berlin, Florida State Univ., Univ. Sci. Tech. China, Iowa State University, Lawrence Livermore National Laboratory, Mahabad Azad University, Carnegie Mellon University, Tempe Preparatory Academy, University of California, Los Angeles