Electric Field Induced Hopping Conductivity: An Investigation of Electric Field-Dependent Resistivity in Polymers

ORAL

Abstract

The resistivity of highly insulating materials exhibits a dependence on electric field strength. Mott and Davis as well as Poole and Frankle describe theoretically the resistivity of disordered semiconductors, when subject to a changing electric field, in terms of hopping conductivity models. While these models have often been applied to polymers, there is little direct experimental evidence to confirm the validity of the theories for polymers. We present such results for a newly-developed block co-polymer Hytrel, a highly insulating material similar to Teflon. The constant voltage resistivity test method has been used to study Hytrel for a range of electric fields up to electrostatic breakdown. We consider whether the Hytrel results are consistent with existing models of electric-field induced hopping conductivity.

Authors

  • S.R. Hart

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research