Velocity measurements of hohlraum-driven beryllium ``flyer'' plates

ORAL

Abstract

In indirectly-driven fusion experiments, energy-coupling between a laser-driven cylindrical hohlraum and the fuel-containing ablator material governs the maximum attainable yield. In the case of the National Ignition Facility, a class of capsules uses copper-doped beryllium ablators containing deuterium-tritium fuel to absorb in excess of 100 kJ of soft x-rays and would hypothetically achieve fusion ignition. In these experiments, planar 0.9\% copper-doped beryllium slabs are mounted on one axial end of a 1.6-mm diameter, 1.2-mm long cylindrical hohlraum. The hohlraum is driven with $\sim$4 kJ of laser energy to radiation temperatures near 150 eV with a 6-ns drive. Bulk hydrodynamic motion of the slab, induced by radiative drive, is measured using side-on x-ray imaging. The slabs' velocities provide estimates of the time-integrated energy received by the beryllium. We present the experimental design and initial results.

Authors

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research

  • Stanley C. Solomon

    University of California and Lawrence Berkeley National Laboratory, Rutgers University, Utah State University, Brigham Young University, University of Utah, NASA, Duke University, FMA Research, Colorado State University, Dartmouth University, Idaho State University, Physics Department, Idaho State University, Physics Department, Utah State University, Los Alamos National Laboratory, Department of Physics, Nanjing University, China, University of California at Riverside, Physics Department, Colorado School of Mines, Physics Department, University of Utah, University of Nebraska - Lincoln, USU, Society of Physics Students, Arizona State University, Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, LANSCE-LC, Los Alamos National Laboratory, Van der Waals-Zeeman Institute, University of Amsterdam, Chemistry and Physics Dept., Virginia State University, University of Saskatchewan, Canada, Chalk River Laboratories, Physics Dept, Oxford University, Physics Dept, Utah State University, Sandia National Laboratories, National Renewable Energy Laboratory, DOE Center for Integrated Nanotechnologies, Sandia National Laboratories, National Center for Atmospheric Research